Search results for "Cathepsin H"
showing 3 items of 3 documents
Expression of cysteine proteinases cathepsins B and K and of cysteine proteinase inhibitor cystatin C in giant cell tumor of tendon sheath.
2001
The expression of cysteine proteinases cathepsins B and K and of the endogenous inhibitor of cysteine proteinases, cystatin C, was investigated in tissue specimens of patients with giant cell tumor of tendon sheath (GCTTS). Expression of both enzymes was examined by immunohistochemistry in tissue specimens of 14 patients with GCTTS. Applying double-labeling techniques, the coexpression of cathepsin B and its major endogenous inhibitor cystatin C was additionally studied. Cells expressing the respective proteins were further characterized with the macrophage markers HAM56 and anti-CD68 (clone PG-M1). Cathepsin B could be detected in numerous HAM56-positive mononuclear cells (MC), but only in…
Possible protective role for C-reactive protein in atherogenesis: complement activation by modified lipoproteins halts before detrimental terminal se…
2004
Background—Previous work indicated that enzymatically remodeled LDL (E-LDL) might activate complement in atherosclerotic lesions via a C-reactive protein (CRP)–dependent and CRP-independent pathway. We sought to substantiate this contention and determine whether both pathways drive the sequence to completion.Methods and Results—E-LDL was prepared by sequential treatment of LDL with a protease and cholesteryl esterase. Trypsin, proteinase K, cathepsin H, or plasmin was used with similar results. Functional tests were used to assess total complement hemolytic activity, and immunoassays were used to demonstrate C3 cleavage and to quantify C3a, C4a, C5a, and C5b-9. E-LDL preparations activated …
Enzymatically modified LDL induces cathepsin H in human monocytes: potential relevance in early atherogenesis.
2003
Objective—Modification with proteases and cholesterylesterase transforms LDL to a moiety that resembles lipoproteins isolated from atherosclerotic lesions and possesses atherogenic properties. To identify changes in monocyte-derived foam cells laden with enzymatically modified LDL (E-LDL), we compared patterns of the most abundant transcripts in these cells after incubation with LDL or E-LDL.Methods and Results—Serial analyses of gene expression (SAGE) libraries were constructed from human monocytes after treatment with LDL or E-LDL. Several tags were differentially expressed in LDL-treated versus E-LDL–treated cells, whereby marked selective induction by E-LDL of cathepsin H was conspicuou…